

Developing an AVHRR-based CDR of TOA radiative fluxes within the CMSAF Project: Outgoing Longwave Radiation

Nicolas Clerbaux and Tom Akkermans

34th CERES Science Team Meeting

Virtual meeting, September 15-18, 2020

<nicolas.clerbaux@meteo.be>

Introduction

See previous presentation of Tom Akkermans

- Already many OLR products from AVHRR and HIRS covering the same time period (1979 onward).

- <u>Interests of this new OLR product :</u>

- New development using state of the art OLR (e.g. from CERES)
- Targeting 0.25° spatial resolution
- Synergy and consistency with the other CM SAF CLARA products (cloud products, surface radiation, RSF, ...)
- Intercomparison with other OLR products (AVHRR, HIRS, CERES, GERB, ScaRaB ...) and reanalysis
- Triple collocation CERES GERB AVHRR
- Possibility to merge with HIRS OLR products

- Some specific questions:

- Can we work with only channel 4 (AVHRR/1 instrument without channel 5)?
- What is the effect of the number of satellites?
- What is the effect of orbital drift?

Content of the talk

- Instantaneous OLR estimation
 - Method
 - Results
- Daily and Monthly mean
 - Method
 - Results
 - Evaluation with CERES
- Feedback loop results
- Summary and next steps

Instantaneous OLR: method

Method:

• Regressions between AVHRR brightness temperatures T_4 (10.8 μ m) and T_5 (12 μ m) and CERES OLR:

$$OLR = c_0 + c_1 \cdot T_4 + c_2 \cdot (T_5 - T_4) + c_3 \cdot (T_4 - T_{surf}) + c_4 \cdot T_4^2 + c_5 \cdot T_4 \cdot (T_5 - T_4) + c_6 \cdot TCWV$$

OLR from CERES SSF Edition 4a

 T_4 and T_5 aggregated in the CERES PSF (~20km).

Ancillary interpolated from ERA5 reanalysis

 T_{surf} : surface skin temperature

TCWV: Total Column Water Vapor

- Huge database of colocated coangular CERES-AVHRR observations (157 millions pairs)
- Regression coefficients $(c_0, c_1, ..., c_6)$ from least square fit after sorting the data in :
 - monthly bins (Jan, Feb, ..., Dec)
 - 10° x 10° latitude longitude boxes
 - 5° VZA bins

Nicolas Clerbaux

• AVHRR/1 instrument without channel 5:

$$OLR = c_0 + c_1 \cdot T_4 + c_2 \cdot (T_4 - T_{surf}) + c_3 \cdot T_4^2 + c_4 \cdot TCWV$$

Results: RMS error of the regression in CERES PSF

RMS error (Wm⁻²) in CERES PSF (including collocation error): (top) for the two channels regression and (bottom) when Channel 5 is not available

Results: regional bias

Results: VZA dependency of RMS

~50°: good angle for OLR estimation

Method:

- Spatial aggregation of instantaneous OLR to 0.25°x0.25°
- Ocean and cloudy pixels: simple linear temporal interpolation between instantaneous OLR
- Clear land pixels: use of the shape of the ERA5 OLR diurnal variation rescaled to observations

Daily/Monthly mean: evaluation PRMI

Difference between the June 2012 monthly mean OLR calculated by using the individual satellites and the reference monthly mean.

Reference monthly mean maps computed using 8 observations/day (from Metop-A, NOAA-15, NOAA-18, NOAA-19).

Daily/Monthly mean: evaluation PRMI

Monthly mean OLR difference NOAA-19 – NOAA-15 (worst case)

Difference between the monthly mean OLR calculated by only using NOAA-19 and by only using NOAA-15, for April (a,b) and June (c,d) 2012, with (a,c) linear temporal interpolation and (b,d) ERA5 diurnal cycle modeling for clear land pixels.

Nicolas Clerbaux

Monthly mean using 4 satellites (METOP-A, NOAA-15, NOAA-17, NOAA-19) - RMSE-bc of ~ 1.7 W/m²

RMSE~bc=1.63 W/m3 RMSE=1.92 W/m2 MAE=1.50 W/m²

-12

-16

W/m²

Monthly mean using 2 satellites (METOP-A + NOAA-19) - RMSE-bc of ~ 2.2 W/m²

Overall comparison with CERES

Monthly mean using $\underline{1 \text{ satellites}}$

RMSE-bc:

Metop-A: 2.6 W/m² NOAA-15: 2.5 W/m² NOAA-18: 2.4 W/m² NOAA-19: 2.6 W/m²

Overall comparison with CERES WE VIRMIN

Regression for AVHRR/2 and AVHRR/3 (Ch4 + ch5) RMSE-bc ~ 1.7 W/m²

First month: January 1979

TIROS-N (AVHRR/1) only ~ 03:00 LT and 15:00 LT

RMSE-bc wrt HIRS OLR daily mean : ~ 7 W/m² monthly mean : 4.01 W/m²

End of swath visible in daily mean (to be investigated)

Second month: April 1981

NOAA-6 (AVHRR/1): ~07:30 LT and

~19:30 LT

RMSE-bc wrt HIRS OLR daily mean : ~ 7 W/m² monthly mean : 5.66 W/m²

Monthly mean evaluation affected by HIRS data gap (AVHRR ok)

Third month: Jan 1983

NOAA-6 (AVHRR/1): ~07:30 LT NOAA-7 (AVHRR/2): ~15:00 LT

RMSE-bc wrt HIRS OLR daily mean : ~ 7 W/m² monthly mean : 3.19 W/m²

Daily mean ok

Monthly mean ok

April 2002 – Monthly mean

NOAA-15 (AVHRR/3): ~07:00 LT NOAA-16 (AVHRR/3): ~14:00 LT

RMSE-bc

wrt HIRS OLR : 1.88 W/m^2 wrt SYN : 1.77 W/m^2

HIRS

CERES SYN

April 2002 – Daily mean

NOAA-15 (AVHRR/3): ~07:00 LT NOAA-16 (AVHRR/3): ~14:00 LT

11070110 (71011111) 3). 11.0

RMSE-bc

wrt HIRS OLR : 5.5 W/m² wrt SYN : 5.6 W/m²

Monthly mean

Global monthly statistics CLARA-A3 w.r.t. ERA-5, CERES, and HIRS (OLR)

Daily mean

Triple collocation

- Triple collocation of 1°x1° monthly means OLR from
 - CERES EBAF (Ed4.1)
 - CM SAF GERB/SEVIRI (ed2.0)
 - CM SAF CLARA (A3)
- Assumption: the uncertainties (retrieval errors) of the 3 products are not correlated.
- In average uncertaincy (at 1-sigma) of

CERES EBAF	: 0.8	$' \pm 0.22$. W/m²
CLARA A3	: 1.73	3 ± 0.23	W/m ²

GERB ed02 : $1.32 \pm 0.63 \text{ W/m}^2$

 Using CERES EBAF as the "truth" (no error) uncertainties (at 1-sigma):

CLARA: 1.96 W/m²

GERB: 1.62 W/m²

Month	1-sigma uncertainties (W/m²)			
	EBAF	CLARA	GERB	
200501	1.275	1.519	3.035	
200801	1.097	1.293	0.995	
200804	0.557	1.744	1.987	
200807	0.921	1.984	0.843	
200810	0.745	1.636	1.359	
200811	0.653	1.749	1.247	

201007 0.935 2.125 0.685

1.940

1.241

0.557

201001

201101 1.043 1.874 1.082 201107 0.737 1.487 1.084

201206 1.090 1.692 0.958

Average 0.874 1.731 1.320 Std.Dev. ±0.229 ±0.232 ±0.631

Summary

- Regression between CERES OLR and AVHRR ch-4 and -5 BTs
- Instantaneous OLR RMS error ~ 5W/m² (~ 6W/m² for AVHRR/1)
- Diurnal cycle modelling using ERA5 (for clear land warming)
- Feedback loop gives encouraging results :

RMS error $\sim 4 \text{W/m}^2 \rightarrow 2 \text{W/m}^2$ for monthly mean

RMS error $\sim 10 \text{ W/m}^2 \rightarrow 4.5 \text{W/m}^2 \text{ for daily mean}$

 Next steps: full CDR processing, comprehensive validation, CDR release expected Q4 2021, development and inclusion of AVHRR-like from VIIRS (S-NPP, NOAA-20).

N. Clerbaux, T. Akkermans, E. Baudrez, A. Velazquez Blazquez, W. Moutier, J. Moreels and C. Aebi (2020): The Climate Monitoring SAF Outgoing Longwave Radiation from AVHRR, Remote Sensing, 12(2), 929; doi:10.3390/rs12060929.

2. Outgoing Longwave Radiation PRMI

Nicolas Clerbaux